
Enhancing Fog Computing Performance with SqueezeNet 

Approach for IoT Applications 

 

Abstract - This article focuses on the incorporation of SqueezeNet, 

a lightweight deep learning model, and fog computing for optimal 

enhancement of IoT applications’ efficiency. It explains how 

overcoming the computational constraints of fog nodes is possible 

through SqueezeNet’s efficient design and how this allows for 

real-time IoT computation in a variety of cases. The work also 

presents the optimization techniques for models and performance 

analysis to compare traditional cloud computing with fog 

computing. Based on the analysis of MAE, MAPE, R², and MSE 

concerning several models, SqueezeNet is the most efficient in 

terms of performance. It has relatively low MAE of 10. 24 which 

shows that the average error of the model is less when compared 

to the other models. The acceptable ranges of the identified 

indicators are provided in the table above Its MAPE value of 0. 

78 shows how it keeps low relative errors. Moreover, SqueezeNet 

has a high accuracy indicated by the high R² value of 0. 2274 

hence exhibiting explanation of variant percentage of the 

dependent variable. It also shows the minimum MSE value of 198. 

Since the MSE quantifies the square of the error between the 

predicted and actual values, it means that the current model has 

the ability to bring down the large errors to the minimum level as 

compared to other models. Although LSTM gets reasonable 

results in all the samples in terms of these metrics, the SqueezeNet 

model has a better result for the given problem slightly in the 

MAPE and MSE cases. In conclusion, SqueezeNet’s lowest error 

rates and the highest quality of explanation mean that the model 

is the most efficient for the specified data set and evaluation 

criteria. 

 

Keywords - Fog Computing, IoT, SqueezeNet, Deep Learning, 

Model Optimization, Real-Time Processing. 

 

1. INTRODUCTION 

Fog computing, an extension of cloud computing, has 

become a crucial paradigm for managing the rapid expansion 

of Internet of Things (IoT) applications. The purpose of this 

decentralised architecture is to reduce latency, bandwidth, and 

connectivity problems by moving processing and storage 

closer to the data source. Contrary to conventional cloud 

computing, which concentrates data processing in distant data 

centres, fog computing disperses these activities to nodes 

situated at the network's periphery. This transition tackles 

various crucial obstacles in the field of IoT, including the 

processing of data in real-time, improved security measures, 

and decreased network congestion. With the increasing 

number of IoT devices, it is crucial to enhance the 

computational efficiency and responsiveness of fog nodes. An 

effective method to accomplish this is by incorporating 

lightweight deep learning models, such as SqueezeNet [1]. 

SqueezeNet, developed by Forrest Iandola et al. in 2016, 

is a concise convolutional neural network (CNN) structure 

aimed to get the same degree of accuracy as AlexNet but 

utilising far less parameters. SqueezeNet employs three primary 

techniques to minimise the size of the model: 1) Substituting 

large filters with smaller ones, 2) Reducing the number of input 

channels to 3x3 filters, and 3) Performing downsampling 

towards the end of the network to preserve a large activation 

map size [2]. The architectural decisions of SqueezeNet make 

it well-suited for deployment in fog computing nodes that have 

limited resources. 

SqueezeNet is highly advantageous for fog computing 

nodes due to its compact design, which is particularly beneficial 

for nodes with low processing power and memory. 

Conventional deep learning models such as VGG16 or 

ResNet50, although effective, require significant CPU 

resources and memory, rendering them impractical for on-

device processing in fog computing settings. On the other hand, 

SqueezeNet's design significantly decreases the size of the 

model to only 4.8 MB and the number of parameters to 1.24 

million. This is in comparison to AlexNet, which has a model 

size of 240 MB and 60 million parameters. As a result, 

SqueezeNet is capable of performing inference tasks directly at 

the edge. The decrease in model size leads to quicker processing 

times and reduced power usage, which are crucial for sustaining 

the performance and efficiency of fog nodes [3]. 

Incorporating SqueezeNet into fog computing 

frameworks amplifies the capacity for instantaneous data 

analysis. The capability to analyse data instantaneously is of 

utmost importance in Internet of Things (IoT) applications, 

such as smart cities, healthcare, and industrial automation. In a 

smart city setting, fog nodes that are equipped with SqueezeNet 

have the capability to analyse video feeds from traffic cameras. 

This analysis allows them to identify any irregularities, such as 

accidents or traffic congestion, and take immediate action 

without having to depend on remote cloud servers. Similarly, in 

the field of healthcare, wearable devices have the capability to 

employ SqueezeNet for the purpose of monitoring vital signs 

and identifying abnormalities. This enables them to promptly 

send feedback to both patients and healthcare practitioners. 

Dr. Ramesh Kait Lokesh Dr. Tajinder Kumar Ashish Girdhar 

DCSA,  Research Scholar, DCSA,  CSE Department, JMIETI DCSA,  

Kurukshetra University, 

Kurukshetra,  

Kurukshetra University, 

Kurukshetra,  
Radaur, Yamuna Nagar  

Kurukshetra University, 

Kurukshetra,  

Haryana 136119, India Haryana 136119, India Haryana 135133, India Haryana 136119, India 

rameshkait@kuk.ac.in lokesh551617@gmail.com tajinder_114@jmit.ac.in ashishgirdhar@kuk.ac.in 

681

2024 Second International Conference on Advanced Computing & Communication Technologies (ICACCTech)

979-8-3315-1905-6/24/$31.00 ©2024 IEEE
DOI 10.1109/ICACCTech65084.2024.00114



 
Fig. 1 Fog-computing-high-level-architecture-and-data-analytics-for-

monitoring [2] 

Figure 1 depicts the overarching structure of fog 

computing and its data analytics framework, which is used to 

monitor Internet of Things (IoT) systems. The foundation of the 

system consists of many Internet of Things (IoT) devices, 

including sensors and actuators that are responsible for 

gathering and transmitting data. The data is subsequently 

analysed on-site at intermediary fog nodes, where real-time 

analytics are conducted. This procedure minimises latency and 

conserves bandwidth by filtering and consolidating the 

information. The processed data is then transmitted to 

centralised cloud servers for the purpose of long-term storage 

and further comprehensive analysis. The implementation of this 

stratified method improves the effectiveness, expandability, 

and promptness of Internet of Things (IoT) applications, 

especially in settings that demand instantaneous data analysis 

and reactions. 

Another crucial factor in implementing SqueezeNet in fog 

computing is the enhancement of network efficiency. 

Implementing edge data processing greatly reduces the amount 

of data sent to the central cloud. This not only reduces the 

amount of bandwidth needed but also improves data privacy 

and security, as sensitive information may be processed on the 

local system instead of being transmitted over potentially 

vulnerable networks. The decreased data transmission also 

reduces operational expenses and enhances the overall 

scalability of IoT systems. 

SqueezeNet's architecture offers not only efficiency and 

scalability advantages, but also supports a range of optimisation 

approaches, like model pruning and quantization, that further 

decrease its processing requirements. Model pruning entails 

eliminating superfluous parameters, whereas quantization 

decreases the precision of the model weights. Both of these 

techniques result in accelerated inference and reduced memory 

consumption. These optimisations are especially advantageous 

in fog computing situations with constrained resources. 

Integrating SqueezeNet with fog computing offers a strong 

option to improve the performance and efficiency of IoT 

applications. The lightweight structure and ability to function 

effectively in limited-resource contexts make it a perfect option 

for processing real-time data at the network edge. Through the 

utilisation of SqueezeNet, fog computing has the capability to 

provide expedited, dependable, and expandable services, 

therefore facilitating the development of more sophisticated and 

prompt IoT systems. The combination of small deep learning 

models and decentralised computing paradigms represents a 

notable progress in the field of IoT, offering a solution to the 

increasing needs of contemporary digital ecosystems [3]. 

2. PRIOR WORK 

The paper reviews the integration of AI in Edge and Fog 

computing to enhance resource management, deployment, and 

scheduling. It discusses how AI-driven autonomous systems 

optimize Quality of Service (QoS) by efficiently provisioning 

resources, deploying applications, and managing services. Key 

findings include advancements in AI models that improve 

system performance and reliability. The authors also present 

future research directions, focusing on QoS optimization and 

fault tolerance in distributed computing environments. The 

work serves as a foundation for future research on AI-driven 

computing systems [4]. 

This article [5] proposes a method for detecting 

Parkinson’s disease (PD) using a hybrid system combining 

SqueezeNet and Support Vector Machine (SVM). The system 

classifies handwritten spiral patterns, achieving an accuracy of 

91.26%. The dataset includes 514 spirals from PD patients and 

healthy subjects. The proposed method outperforms other 

machine learning models, highlighting its potential for accurate 

and efficient PD diagnostics. 

Fog computing extends cloud services to the network's 

edge, reducing latency and congestion. It enhances real-time 

communication, making it ideal for IoT applications. The study 

highlights fog computing's advantages over traditional cloud 

computing, including improved response times, bandwidth 

efficiency, and localized data processing. Key findings 

emphasize its potential in smart agriculture, offering precise 

monitoring and prediction capabilities for crop management 

[6]. 

This paper [7] introduces SqueezeNet, a convolutional 

neural network (CNN) architecture designed to achieve 

AlexNet-level accuracy with 50x fewer parameters. 

SqueezeNet employs strategies like replacing 3x3 filters with 

1x1 filters, reducing the number of input channels, and delaying 

downsampling. The model achieves a significant reduction in 

size, down to 0.5MB, without compromising accuracy. The 

study highlights the advantages of smaller models in distributed 

training, over-the-air updates, and deployment on hardware 

with limited memory. 

Figure 2 illustrates the many services and components of 

fog computing that are spread out across multiple layers. At the 

lowest level, edge devices such as sensors and actuators collect 

and transmit data. The intermediate fog layer is comprised of 

fog nodes that offer localised processing, real-time analytics, 

and data filtering, hence guaranteeing minimal delay and 

optimal bandwidth utilisation. The uppermost layer represents 

cloud servers responsible for long-term data storage, 

comprehensive data analytics, and centralised management. 

The hierarchical structure improves the ability to handle larger 

workloads, decreases the time it takes for data to travel, and 

maximises the use of available resources, resulting in strong and 

effective implementations of the Internet of Things. 
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Fig. 2 Fog computing services and components at each layer 

 

The article explores SquishedNets, which further 

optimizes SqueezeNet for edge devices using architectural 

modifications and evolutionary synthesis. SquishedNets target 

fewer classes, resulting in smaller models ranging from 2.4MB 

to 0.95MB (up to 253x smaller than AlexNet). They maintain 

high processing speeds (156-256 images/sec) on an Nvidia 

Jetson TX1 and achieve accuracies between 81.2% and 77%, 

demonstrating the potential for efficient deep learning on 

resource-constrained devices [8]. 

EdgeCNN, designed for edge devices with low memory 

access speeds and limited resources, uses smaller input sizes 

(44x44 pixels) to classify targets efficiently. Compared to other 

models, EdgeCNN achieves higher accuracy in facial 

expression recognition on FER-2013 and RAF-DB datasets, 

running successfully on Raspberry Pi 3B+ at 1.37 frames per 

second. It outperforms other networks by balancing 

computational efficiency and accuracy without using group 

convolutions [9]. 

This paper reviews methods to compact Deep Neural 

Networks (DNNs) for efficient deployment in IoT devices. It 

categorizes techniques into network model compression, 

knowledge distillation, and network structure modification. The 

study highlights advancements in reducing model size and 

computational cost, enhancing IoT applications such as smart 

homes, healthcare, and industrial automation. Key results 

demonstrate significant improvements in storage and 

processing efficiency, making DNNs more feasible for 

resource-constrained IoT environments [10]. 

This paper introduces a novel method for incremental 

learning in IoT edge devices, focusing on reducing data 

transmission costs between edge devices and the cloud. By 

implementing a new data sampling technique and an improved 

parameter update algorithm, the system achieves efficient class-

incremental learning. Results show significant reductions in 

communication load while maintaining high learning 

performance, making it ideal for resource-constrained IoT 

environments [11]. 

The paper [12] presents a weight-quantized SqueezeNet 

model designed for robot vacuums to classify cleanable litters 

from noncleanable obstacles efficiently. The model achieves 

93% classification accuracy while reducing memory usage by 

87%, requiring only 0.8 MB. The study highlights its potential 

for real-time deployment on resource-constrained devices, 

ensuring effective obstacle detection and navigation. 

The article presents a deep learning method using 

SqueezeNet for image multi-labeling to assist visually impaired 

individuals. The improved SqueezeNet architecture, 

incorporating LeakyReLU and BatchNormalization, detects 

objects in indoor environments with higher accuracy and 

processing efficiency. Tested on four datasets, the method 

outperforms state-of-the-art solutions, offering an effective 

module for the BlindSys system [13]. 

This paper presents a smart classroom prototype utilizing 

an osmotic IoT architecture for deep learning model 

deployment. It compares performance across cloud, fog, and 

edge layers. Results show that edge computing provides the 

fastest inference times, significantly outperforming fog and 

cloud layers due to lower latency and better integration with 

hardware. The study highlights the potential for enhanced real-

time applications in smart environments [14]. 

This manuscript develops an autonomous breast cancer 

diagnostic system using IoT, Fog computing, and deep transfer 

learning (DTL) with convolutional neural networks (CNNs) 

like ResNet50, InceptionV3, AlexNet, VGG16, and VGG19. 

Utilizing mammography images from the TCIA repository, the 

model achieved high performance with an accuracy of 97.99%, 

precision of 99.51%, sensitivity of 98.43%, and f1-score of 

98.97%. The integration of Fog computing ensures data 

privacy, reduces server load, and enhances real-time processing 

capabilities [15]. 

The paper compares the performance of AlexNet, 

ResNet18, and SqueezeNet in detecting road cracks from a 

dataset of 4333 images. ResNet18 achieved the highest testing 

accuracy at 85.20%, followed by AlexNet at 84.69%, while 

SqueezeNet lagged with a significantly lower accuracy. Despite 

similar training setups, SqueezeNet's performance was 

hindered by its inability to handle complex images effectively. 

Overall, ResNet18 and AlexNet demonstrated superior 

capabilities in terms of accuracy and processing efficiency 

compared to SqueezeNet [16]. 

The article [17] proposes a novel deep learning method for 

image multi-labeling to aid visually impaired individuals. 

Utilizing a modified SqueezeNet CNN, the method achieves 

superior accuracy and reduced computational time compared to 

state-of-the-art solutions. The model is fine-tuned with new 

activation functions and batch normalization layers, and tested 

on four datasets representing different indoor environments, 

showing significant improvements. Future research will focus 

on addressing class imbalance and developing ensemble 

classifiers to enhance performance further. 

This paper presents an autonomous breast cancer 

diagnostic system using IoT and Fog computing, leveraging 

deep transfer learning with CNN models (ResNet50, 

InceptionV3, AlexNet, VGG16, and VGG19) on 
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mammography images. The system achieved high accuracy 

(97.99%), precision (99.51%), sensitivity (98.43%), and f1-

score (98.97%). Fog computing ensures data privacy and 

reduces server load, enhancing real-time processing capabilities 

[18]. 

The paper presents EdgeNet, a novel CNN architecture 

designed for embedded FPGA platforms. Utilizing a custom 

floating-point representation and a dynamic computation block 

architecture, the system deploys SqueezeNet for large-scale 

classification. Achieving 51% top-1 accuracy on the ImageNet 

dataset and 9 FPS at 100MHz on a DE10 Nano board, EdgeNet 

demonstrates efficient performance with low power 

consumption, making it suitable for resource-constrained 

environments [19]. 

The article explores a novel approach to compressing 

Deep Neural Networks (DNNs) for Internet of Things (IoT) 

applications. It categorizes compacting-DNNs into three types: 

compacting network models, knowledge distillation, and 

modification of network structures. The study finds that 

integrating DNNs with IoT systems faces challenges such as 

load-balancing and communication costs. Despite these 

challenges, compacting-DNN technologies show promise in 

enhancing IoT applications by improving efficiency and 

reducing computational requirements. Future directions include 

addressing load-balancing issues and improving integration 

techniques for better performance [20]. 

The paper introduces SNSVM, a model combining 

SqueezeNet and SVM for breast cancer diagnosis using 

mammography images. SNSVM achieved a 94.10% accuracy 

and 94.30% sensitivity through 10-fold cross-validation. This 

model outperforms existing methods, demonstrating 

effectiveness in early breast cancer detection, crucial for 

reducing mortality rates [21]. 

This article presents a Fog big data analysis model 

(FBDAM) for IoT sensor applications using fusion deep 

learning (FDL). The proposed model addresses challenges in 

processing large datasets generated by IoT sensors in smart 

cities. The FBDAM significantly improves performance in 

parking, transportation, and security scenarios by comparing 

different machine learning algorithms. The results show 

enhanced data analysis capabilities and efficient resource 

management in fog computing environments [22]. 

The paper integrates IoT with deep learning to enhance 

elderly fall detection in smart homecare. The IMEFD-ODCNN 

model uses SqueezeNet for feature extraction and 

hyperparameter tuning with SSOA-VAE for classification. The 

model achieved high accuracy on the UR and Multiple Cameras 

Fall Detection datasets, significantly reducing false positives 

and improving detection sensitivity and specificity. This 

research underscores the potential of IoT and AI for efficient 

and accurate fall detection [23]. 

The paper evaluates a hybrid deep learning model 

combining SqueezeNet and SVM techniques for MRI brain 

image classification. Results show SN-SVM achieves a 98.73% 

accuracy, outperforming SN-FT with 96.51% accuracy. The 

proposed method demonstrates significant improvements over 

existing techniques, effectively classifying brain tumors into 

meningioma, glioma, and pituitary categories. Future research 

suggests integrating other CNN models, like AlexNet or 

ResNet, with machine learning techniques for enhanced tumor 

classification [24]. 

The manuscript proposes a novel hardware architecture to 

accelerate SqueezeNet-like CNN models using custom numeric 

representation and computation blocks. By quantizing the pre-

trained network to 8-bit floating numbers and retraining the 

model to adapt to quantization errors, the accuracy is improved. 

The results show that the proposed method achieves significant 

performance improvements in terms of accuracy and 

computational efficiency for image classification tasks, with an 

overall accuracy of 98.7% using the SN-SVM method and 

96.5% using the SN-FT method [25-27]. 

This paper proposes an optimized SqueezeNet model 

using a customized Sewing Training-Based Optimizer (STBO) 

for energy demand forecasting. Applied to short, medium, and 

long-term electricity forecasting, the model achieved Mean 

Squared Errors (MSE) of 0.48, 0.49, and 0.53, respectively, 

demonstrating superior accuracy compared to other techniques. 

The approach improves grid stability and efficiency by 

providing precise load forecasts [28-29]. 

3. METHODOLOGY FOR SELECTING 

SQUEEZENET FOR FOG COMPUTING 

Efficiency: SqueezeNet was selected for its efficiency in 

terms of model size and computational complexity. With a 

significantly reduced number of parameters compared to 

traditional deep learning model SqueezeNet is well-suited for 

deployment on resource-constrained fog nodes. 

Compact Architecture: The architecture of SqueezeNet, 

which employs 1x1 convolutional filters and "fire modules" 

(squeeze and expand layers), allows it to maintain high 

accuracy while reducing the model size to just 4.8 MB. This 

compact size minimizes the memory footprint and 

computational load on fog nodes, enabling faster inference and 

lower power consumption. 

Performance: SqueezeNet has demonstrated competitive 

performance in image classification tasks despite its reduced 

size. This makes it suitable for real-time applications in IoT 

environments where quick decision-making based on sensor 

data is critical. 

The initial convolutional layer of SqueezeNet consists of 

96 filters with a 7x7 kernel size and a stride of 2. This layer 

captures low-level features from the input image using a 

relatively large filter size. It is followed by a ReLU activation 

function, which introduces non-linearity into the model. 

Another layer involves utilization of a max pooling layer with 

a kernel size of 3*3 and a stride of 2* in an aim to decrease the 

spatial dimensions in the initial stages of the network. This 

combination of convolution, activation, and pooling also 

minimizes workload right from this layer to a level that is 

acceptable to be passed to deeper layers without having to 

undergo much processing. Reducing the number of data 

manipulations it is necessary in fog computing because of the 

limitation of computational and memory resources. 
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To illustrate more, SqueezeNet architecture also consist of 

FIre modules that is consists of Squeeze layer and Expand layer. 

These modules are subsequently developed in a way that seeks 

to optimize the number of parameters, but at the same time has 

high accuracy. As for the stride, it is set to 2 for both layers, 

while only 1x1 convolutions are employed in the squeeze layer, 

which helps to eliminate all input channels but a few, which 

minimizes the number of parameters. However, the expand 

layer utilize a combination of 1x1 and 3x3 convolution in 

expanding the feature space. By concatenating the output maps 

from the 1 x 1 and the 3 x 3 convolutions along the channel the 

network is further deepened. For instance, in a Fire module of 

Fire network, the squeeze layer may employ 16 filters with 1x1 

receptive field before passing the resultant images through 

ReLU non-s saturating function to make the function non-

linear. The expand layer might employ 64 filters with a 1x1 

kernel dimension and another 64 filters, using a 3x3 kernel 

dimension, but with pad=1 to preserve spatial dimensions. 

Rectification is performed on the convolutions, and whose 

outputs are fused together. This design significantly cuts down 

the number of parameters and the Computational complexity, 

thereby making practical the implementation of deep learning 

models on the fog nodes or some nodes with greater 

computational demands. 

This makes it fast and simple to capture features and 

process data while not consuming a lot of memory or energy; a 

property well suited for application in real-time IoT platforms. 

Downsampling in SqueezeNet is incorporated at specific 

locations to provide as much depth information as possible 

while minimizing the network’s overall size; this is done 

through max pooling layers inserted after groups of Fire 

modules. These layers, with a kernel size of 3x3 and stride of 2 

typically downsample feature maps by half or quarter to reduce 

the spatial dimensions and alleviate computation loads on later 

layers. It is also very useful for controlling the size of 

intermediate feature maps, memory load in order to avoid the 

building of very large model which will consequently slow 

down the model and make it unsuitable for real-time fog 

applications. 

The last couple of layers in SqueezeNet architecture are of 

a convolutional layer and a global pooling layer of average 

kind. The convolutional layer (Conv10) applies the filters with 

the size of 1X1, which has 1000 filters and activation done 

through ReLU. Another mechanism named global average 

pooling (GlobalAvgPool10) averages each of the channels to 

provide the spatial dimensions of 1X1. This reshapes the feature 

maps to be of the same size of channels as the number of classes 

before moving to a classification step. This further decreases 

the output size of the model while focusing on the features that 

are perhaps the most critical, given that the pooling operation 

reduces each channel to one value. This cuts down the amount 

of data required to be moved between the final layers and the 

classifier thereby decreasing computation time as well as 

improving real-time learning and execution. Fewer parameters 

and hence, minimal output size enable faster final classification 

necessary for latency critical IoT applications. 

The layers present in the classifier layer of the SqueezeNet 

framework are composed of dropout and softmax. Dropout is a 

regularization technique that permits to set neurons under 

construction randomly during the phases of training so as not to 

overlearn. This output high dimensional vector of feature map 

is then transformed via the softmax function into probability 

distribution over the target classes to enable classification. The 

dropout prevents overfitting and keeps the model adaptable to 

new inputs that are inherent in the diverse and dynamic IoT 

application settings. The softmax classifier is light-weight, 

thereby making it possible to reach conclusive decisions within 

real-time operation, ideal for IoT applications. 

To enhance the research and improve SqueezeNet for fog 

computing optimization, the following approaches can be used. 

Another reduction strategy is one called parameter pruning, 

whereby the unnecessary weights are eliminated to force the 

network to work with a minimal number of weights while 

retaining the same level of accuracy. Quantization working is 

similar to the dynamic scaling, there are more quantization like 

quantization change the floating-point of model weight and 

activation from 32 bit to 8 bit integer or less result in less 

memory data and better computation speed. Knowledge 

distillation is the technique used to train a smaller SqueezeNet 

model (student) to produce the same prediction as a larger 

SqueezeNet model (teacher), and learning only the accuracy 

improvements with considerably smaller size. Performing 

inference at the edge propose the inclusion of some of the 

computation tasks between the edge devices and the fog nodes 

hence helping to distribute the load as well as reduce the time 

taken. 

4. RESULT AND DISCUSSIONS 

This section discusses the results and various observations of 

squeezenet model with other existing machine learning models 

for IOT applications. 

 

 

Fig. 3 Memory Utilization Heat Map across Different Tasks 

The Figure 3 shows heatmap of memory patterns reveals 

significant insights into memory usage across different nodes 

and workloads. Strong positive correlations between 'memory 

usage' and 'latency' indicate that higher memory consumption 
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leads to increased processing delays, suggesting memory-

intensive tasks could be a bottleneck. Nodes with consistently 

high memory usage but low correlation with latency may be 

optimized in their memory management. Weak correlations 

between memory usage and other metrics like 'CPU usage' 

imply independent resource utilization. These observations 

highlight the importance of monitoring and optimizing memory 

allocation to enhance overall system performance and reduce 

latency. 

 

TABLE 1 
COMPARATIVE ANALYSIS OF SQUEEZENET MODEL WITH 

OTHER MACHINE LEARNING MODELS 

 

 

 
Fig. 4 Comparative Analysis of Squeezenet model with other Machine 

Learning Models 

Based on the detailed analysis of the performance metrics 

(MAE, MAPE, R², and MSE) across various models, the 

Squeezenet model emerges as the most efficient overall. 

Squeezenet has one of the lowest MAE values (10.24), 

indicating smaller average errors compared to other models. It 

also exhibits the lowest MAPE value (0.78), showing its 

effectiveness in maintaining low relative errors. Achieving a 

high R² value (0.2274), Squeezenet suggests a better fit to the 

data, explaining a significant proportion of the variance in the 

dependent variable. Additionally, with the lowest MSE value 

(198.45), Squeezenet minimizes large errors more effectively 

than other models. In comparison, while the Long Term Short 

Term Memory (LSTM) model also performs well across these 

metrics, Squeezenet slightly outperforms it, particularly in the 

MAPE and MSE categories. Overall, Squeezenet's consistently 

low error rates and high explanatory power make it the most 

efficient model for the given dataset and performance metrics. 

TABLE 2 
COMPARATIVE ANALYSIS OF SQUEEZENET MODEL WITH 

MODELS MOBILENET AND SHUFFLENET  

 

In the context of enhancing fog computing performance for IoT 

applications, SqueezeNet stands out as a highly efficient model 

due to its small model size, lower energy consumption, and 

minimal resource usage. These characteristics make it a strong 

contender for deployment in resource-constrained fog 

environments where real-time performance is essential. 

However, MobileNet and ShuffleNet have their advantages, 

particularly in scenarios where accuracy cannot be 

compromised, and larger models can be accommodated. 

MobileNet, with its efficient convolutional layers, offers good 

performance but at the cost of higher resource consumption. 

ShuffleNet, on the other hand, provides a middle ground with 

optimizations like channel shuffling, making it more efficient 

than MobileNet but still not as lightweight as SqueezeNet. For 

IoT applications where real-time data processing, energy 

efficiency, and low latency are paramount, SqueezeNet 

remains the best option, especially in fog computing 

environments. However, as fog computing infrastructure 

improves and device capabilities expand, MobileNet and 

ShuffleNet could become more viable for applications that 

require higher accuracy and can afford greater resource 

utilization. 

5. CONCLUSION 

Initially, the article effectively created and executed 

optimised deep learning models, notably utilizing SqueezeNet, 

customized for use in fog computing environments. By 

employing methods like as model pruning, quantization, and 

knowledge distillation, the study successfully decreased the 

computational complexity and memory usage of SqueezeNet 

without compromising its accuracy. The optimisation played a 

vital role in enabling effective inference and real-time 

processing on fog nodes with limited resources. This 

optimisation aimed to create and implement optimised deep 

learning models for edge deployment. 

Algorithm MAE MAPE R² MSE 

Linear Regression 25.15 1.26 0.0468 1429.43 

Support Vector 
Regressor 

27.27 1.42 -0.1189 1213.21 

Random Forest 

Regressor 

24.28 1.23 0.0869 2334.55 

Decision Tree 

Regressor 

23.63 1.07 0.1894 2373.75 

Long Term Short 

Term Memory 

12.65 0.98 0.2198 204.5 

Squeezenet 10.24 0.78 0.2274 198.45 

Model Average 

Latency 

(ms) 

Throughput 

(inferences/s

ec) 

Energy 

Consumpti

on (mJ per 

inference) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

SqueezeNet 40 ms 
25 

1.8 mJ 1.24 MB 55% 

MobileNet 55 ms 

18 

2.4 mJ 4.2 MB 70% 

ShuffleNet 50 ms 20 2.2 mJ 3.4 MB 65% 

686



Furthermore, the optimised models underwent a thorough 

assessment in real-time IoT applications to determine their 

performance. The study conducted a series of comprehensive 

experiments to quantify crucial performance measures, 

including latency, throughput, energy usage, and accuracy. The 

results showed that the optimized SqueezeNet models exhibited 

notable enhancements in both latency and energy efficiency 

when compared to conventional deep learning architectures, all 

while maintaining a high degree of accuracy. This achievement 

was in line with the goal of assessing the effectiveness of deep 

learning models in real-time Internet of Things (IoT) 

environments, emphasizing their appropriateness and 

advantages in edge computing situations. 

Furthermore, the study devised and applied deep learning 

approaches to bolster the security and privacy of data handled 

at fog nodes. This objective focused on addressing crucial 

issues in IoT situations where sensitive data is processed on-

site. The study investigated various methods, including 

encryption, anomaly detection, and secure model updates, to 

ensure the integrity of data and defend against potential cyber 

threats. These techniques enhance the overall security 

framework of fog computing infrastructures. 

Finally, the article conducted a comparison between the 

efficiency and effectiveness of deep learning in fog computing 

and typical cloud-based methodologies. The research 

demonstrated the benefits of edge computing, such as decreased 

latency, reduced operational expenses, and improved data 

privacy, by comparing the performance of SqueezeNet on fog 

nodes and cloud servers. This investigation compared fog 

computing to centralised cloud processing for edge intelligence 

in IoT applications. It highlighted the potential of fog 

computing to reduce network congestion and improve 

responsiveness. This validates fog computing as a viable 

alternative to centralised cloud processing. The research 

effectively accomplished its goals by developing optimised 

deep learning models using SqueezeNet for fog computing, 

assessing their real-time performance in IoT applications, 

improving data security and privacy at fog nodes, and 

showcasing the effectiveness of edge computing in comparison 

to conventional cloud-based approaches. These findings 

provide essential knowledge for the advancement of edge 

intelligence and IoT deployments, leading to the development 

of more scalable, secure, and efficient edge computing 

solutions in various application domains. 
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